Skip to main content Link Menu Expand (external link) Document Search Copy Copied

GaussianCopula.fit

Fit the data with a Gaussian copula, i.e.: compute the univariate distribution for each variable and then its covariance matrix.

GaussianCopula.fit(data, [marginal_dist_dict, ])

Parameters

  • data: (dataframe)
    • dataframe that contains the two columns
  • marginal_dist_dict: (dict)
    • A dictionary where keys are variable names and values are lists of candidate marginal distributions. Defaults to None.

Returns None. Updates attributes GaussianCopula.correlation, GaussianCopula.univariates.

Notes

Examples

Please refer to the below pages for detailed examples:

Example Description
GaussianCopula Demonstrates use of GaussianCopula to create multivariate synthetic data.

Copyright © 2023 BiomedDAR. Distributed by an MIT license.