GaussianCopula.fit
Fit the data with a Gaussian copula, i.e.: compute the univariate distribution for each variable and then its covariance matrix.
GaussianCopula.fit(data, [marginal_dist_dict, ])
Parameters
- data: (dataframe)
- dataframe that contains the two columns
- marginal_dist_dict: (dict)
- A dictionary where keys are variable names and values are lists of candidate marginal distributions. Defaults to
None
.
- A dictionary where keys are variable names and values are lists of candidate marginal distributions. Defaults to
Returns
None. Updates attributes GaussianCopula.correlation
, GaussianCopula.univariates
.
Notes
Examples
Please refer to the below pages for detailed examples:
Example | Description |
---|---|
GaussianCopula | Demonstrates use of GaussianCopula to create multivariate synthetic data. |