Skip to main content Link Menu Expand (external link) Document Search Copy Copied

GaussianCopula

class GaussianCopula(debug=False, correlation_method="kendall") Learn/Build Gaussian Copula for multivariate data.

Parameters

debug: boolean, default False. Whether to print debug-related outputs to console.

correlation_method: str, default kendall. Method for computing covariance matrix

Notes

Examples

Please refer to the below pages for detailed examples:

Example Description
GaussianCopula Demonstrates use of GaussianCopula to create multivariate synthetic data.

Attributes

Attribute Description
debug (boolean) whether to debug or not
var_names (list) array of column names found in data dataframe
univariates (dict) dictionary where the key is the variable name and the value is the fitted MarginalDist instances
correlation (array) computed correlation matrix
fitted (boolean) whether copula has been fitted

Methods

Method Description
print_copula_params() Display copula parameters
compute_correlation(data, [method, transform_to_normal]) Compute the (pairwise) correlation matrix using input data method. Default: “kendall”, options include “kendall”, “spearman”, “pearson”.
fit(data, [marginal_dist_dict, ]) Compute the distribution for each variable and then its covariance matrix
conditional_Gaussian(conditions) Compute the parameters (mean, covariance) of a conditional multivariate normal distribution. (conditions is a pandas.series variable)
sample([size, conditions]) Generates synthetic data from a fitted Gaussian Copula Model

Table of contents


Copyright © 2023 BiomedDAR. Distributed by an MIT license.